

Результаты эксперимента BEST (Baksan Experiment on Sterile Transitions)

BEST

arXiv:2109.11482

BEST Collaboration:

БНО ИЯИ РАН

В. Н. Гаврин

V. Gavrin*, V. Barinov, S. Danshin, V. Gorbachev, D. Gorbunov, T. Ibragimova, Yu. Kozlova, L. Kravchuk, V. Kuzminov, B. Lubsandorzhiev, Yu. Malyshkin, I. Mirmov, A. Shikhin, E. Veretenkin, V. Yants

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia

B. Cleveland

SNOLAB, Sudbury, ON P3Y 1N2, Canada

H. Ejiri

Research Center for Nuclear Physics, Osaka University, Osaka, Japan

S. Elliott, I. Kim, R. Massarczyk

Los Alamos National Laboratory, Los Alamos NM 87545, USA

D. Frekers

Institut für Kernphysik, Westfälische Wilhelms-Universität Munster, D-48149 Munster, Germany

W. Haxton

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

V. Matveev, G. Trubnikov

Joint Institute for Nuclear Research (JINR) Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia

J. Nico

National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA

A. Petelin, V. Tarasov, A. Zvir

JSC "State Scientific Center Research Institute of Atomic Reactors", Dimitrovgrad, 433510, Russia

R. Robertson

Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195, USA

D. Sinclair

Carleton University 1125 Colonel By Drive Ottawa, K1S 5B6, Canada

J. Wilkerson

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA

* Principal Investigator

Галлиевые эксперименты с источниками

Низкая скорость захвата нейтрино, измеренная в Ga экспериментах с источниками, может быть объяснена в рамках нейтринных осцилляций в предположении переходов из активных в стерильные нейтрино с ∆m² ~ 1эB²

$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_v (MeV)})$$

Область допустимых осцилляционных параметров, полученных из 4-х галлиевых экспериментов с источниками в предположении осцилляций в стерильные нейтрино. b.f.p. $\Delta m^2 = 2.15 \text{ eV}^2$, $\sin^2(2\theta) = 0.24$

International Session-Conference of the Section of Nuclear Physics of PSD RAS April 12 - 15, 2016, JINR Dubna

BNO INR RAS

V.N. Gavrin

Consequences of ⁷¹Ga(³He, t) ⁷¹Ge and Q_{EC} -value measurements:

1. contribution from excited states: $7.2\% \pm 2.0\%$ (5.1% by Bahcall)⁽¹⁾ Recent measurement of ⁷¹Ga(³He, t)⁷¹Ge (At RCNP, Japan)

2. Q_{EC} is close to the value employed by Bahcall⁽²⁾: 233.7 ± 1.2 keV (232.7 ± 0.15 keV used by Bahcall)

Penning trap Q-value determination of the 71 Ga(v,e⁻) 71 Ge reaction using threshold charge breeding of on-line produced isotopes (at ISAC/TRIUMF Canada)

3. the observed discrepancy is **NOT** due to any unknowns in Nuclear Physics.

The deficit of neutrinos in the Ga source experiments can be a real physical effect of unknown origin, such as a transition to sterile neutrinos

[S Gariazzo, C Giunti, M Laveder, Y F Li, E M Zavanin, arXiv:1507.08204v1 [hep-ph]]

- ⁽¹⁾ D. Frekers, H. Ejiri, H. Akimune et al., Phys. Lett. B 706, 134 (2011)
- ⁽²⁾ D. Frekers, M. C. Simon, C. Andreoiu, et al., Phys. Lett. B 722, 4–5 (2013)

Эксперимент BEST

Ga R_2 Ga Pee $im^2(2\Theta)$ inner zone outer zone Rı R_2 Rn

ø210

Схема предложенного эксперимента с источником нейтрино. R_1 и R_2 отношение измеренных скоростей захвата к ожидаемым в отсутствие осцилляций скоростям во внутренней и внешней зонах соответственно

R

Отличительные черты **BEST** :

• Поиск исчезновения электронных нейтрино через реакцию заряженных токов (СС) :

 $v_e + {^{71}Ga} \rightarrow {^{71}Ge} + e^{-}$

БНО ИЯИ РАН

В. Н. Гаврин

• Использование компактного, почти монохроматического источника нейтрино хорошо известной активности – наблюдение чистой синусоиды осцилляционных переходов :

$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_v (MeV)})$$

• Хорошо известная активность источника.

• Возможность исследования зависимости скорости захвата нейтрино на двух расстояниях от источника.

- Исследования с очень короткой базой.
- Практически нулевой фон. В основном от Солнца.

Источник ЗМКи обеспечит количество взаимодействий на Ga в несколько десятков раз превышающее то, что можно ожидать от Солнца.

• Все процедуры извлечения хорошо изучены в солнечных измерениях SAGE на ГГНТ.

• Простая интерпретация результатов.

Схема эксперимента BEST

Извлечение ⁷¹Ge (продолжительность 30 часов): 1) Перекачка галлиевых мишеней в реакторы : Inner zone \rightarrow 1 реактор , Outer zone \rightarrow 6 реакторов. (4.5 ч) 2) Германиевый носитель в форме GeCl₄ извлекается из металлического галлия каждого реактора в водную фазу. 3) Концентрирование водного раствора упариванием. (16ч) 4) Синтез GeH₄ и заполнение счетчиков. 5) Счет распадов ⁷¹Ge.(60 – 150 дней)

Измерение активности источника:

1) Перемещение источника в свинцовый контейнер

2) Измерение с ППД спектра гамма излучения на расстоянии 21.65 м (*1ч*)

3) Перемещение источника в калориметр

4) Измерение тепловыделения источника (20-21 ч)

Counter

1:1 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Installation for synthesis of GeH₄

BNO INR RAS

Параметры счета

В эксперименте BEST использовались 2 счетные системы SYS3 и SYS2Z ;

и 2 типа счетчиков с катодом из тонкого углеродного слоя, нанесенного на его внутреннюю поверхность :

- **YCT** (ранее исследовались характеристики)

-YCN (не исследовались ранее) В таблицах представлены пиковые эффективности счетчиков, полученные в 2020-2021г.г. из измерений с изотопами ³⁷Ar и ⁷¹Ge. (доклад В.В. Горбачева)

		Cou	unter fillir	ıg	Cou efficien rise tin energ	nter cy after ne and <u>y cuts</u>		Live tim	ne (days)	2	Δ
Extra ction name	Counter name	Pressure (mm Hg)	GeH4 fraction (%)	Syst. Slot	K -peak	L -peak	Day counting began in 2019	K-peak	L-peak	K-peak	L-peak
Cr 1	YCN113	635	9.5	3.4	0.3422	0.3529	197.66	53.788	33.662	0.7648	0.6996
Cr 2	YCT3	635	9.5	3.1	0.3707	0.3525	207.623	54.376	30.640	0.8043	0.6755
Cr 3	YCNA9	640	10.5	Z.4	0.2933	0.3505	217.693	51.070	51.070	0.7650	0.7650
Cr 4	YCT9	635	9.6	3.6	0.3658	0.3492	227.644	52.981	30.423	0.7820	0.3755
Cr 5	YCN41	635	10.0	Z.1	0.3568	0.3331	237.790	147.774	147.774	0.8025	0.8025
Cr 6	YCT4	630	9.0	3.3	0.3585	0.3558	247.597	139.382	131.148	0.8012	0.3843
Cr 7	YCN113	630	10.3	3.4	0.3407	0.3540	257.617	134.985	136.161	0.7977	0.7108
Cr 8	YCT3	640	9.5	3.1	0.3716	0.3519	267.634	129.098	131.802	0.8298	0.8398
• Cr 9	YCNA9	635	9.9	Z.4	0.293	0.3587	277.678	155.439	155.439	0.7865	0.7865
Cr 10	YCT9	645	9.5	3.6	0.3677	0.3480	287.625	143.604	146.307	0.7567	0.7905

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
Extra ction nameCounter (nm Hg)Pressure fraction (%)GeH4 fraction (%)Syst. SlotK -peakL -peakDay counting began in 2019K-peakL-peak			Counter filling		Counter efficiency after rise time and energy cuts			Live time (days)		Δ		
Cr 11YCT926308.83.50.35630.3570197.6654.47834.3640.81020.7450Cr 21YCT26409.53.20.37510.3556207.62353.70629.8340.78390.6542Cr 31YCN436509.3Z.30.37940.3565217.69350.52550.5250.71430.7142Cr 41YCT976409.23.70.36910.3495227.64452.80829.8840.78720.3672Cr 51YCN466509.5Z.80.36980.3478237.790150.436150.4360.74700.7470Cr 61YCN426409.83.80.36270.3443247.597140.143133.1130.71170.3892Cr 71YCT926409.33.50.35770.3560257.617129.483130.8430.74930.6770Cr 81YCT26459.53.20.3760.3550267.634129.060131.7640.77540.7855	Extra ction name	Counter name	Pressure (mm Hg)	GeH4 fraction (%)	Syst. Slot	K -peak	L -peak	Day counting began in 2019	K-peak	L-peak	K-peak	L-peak
Cr 21YCT26409.53.20.37510.3556207.62353.70629.8340.78390.6542Cr 31YCN436509.3Z.30.37940.3565217.69350.52550.5250.71430.7144Cr 41YCT976409.23.70.36910.3495227.64452.80829.8840.78720.3672Cr 51YCN466509.5Z.80.36980.3478237.790150.436150.4360.74700.7470Cr 61YCN426409.83.80.36270.3443247.597140.143133.1130.77170.3892Cr 71YCT926409.33.50.35770.3560257.617129.483130.8430.74930.6770Cr 81YCT26459.53.20.3760.3550267.634129.060131.7640.77540.7855	Cr 11	YCT92	630	8.8	3.5	0.3563	0.3570	197.66	54.478	34.364	0.8102	0.7450
Cr 31YCN436509.3Z.30.37940.3565217.69350.52550.5250.71430.7143Cr 41YCT976409.23.70.36910.3495227.64452.80829.8840.78720.3673Cr 51YCN466509.5Z.80.36980.3478237.790150.436150.4360.74700.7470Cr 61YCN426409.83.80.36270.3443247.597140.143133.1130.77170.3893Cr 71YCT926409.33.50.35770.3560257.617129.483130.8430.74930.6770Cr 81YCT26459.53.20.3760.3550267.634129.060131.7640.77540.7853	Cr 21	YCT2	640	9.5	3.2	0.3751	0.3556	207.623	53.706	29.834	0.7839	0.6542
Cr 41YCT976409.23.70.36910.3495227.64452.80829.8840.78720.3672Cr 51YCN466509.5Z.80.36980.3478237.790150.436150.4360.74700.7470Cr 61YCN426409.83.80.36270.3443247.597140.143133.1130.7170.3892Cr 71YCT926409.33.50.35770.3560257.617129.483130.8430.74930.6776Cr 81YCT26459.53.20.3760.3550267.634129.060131.7640.77540.7853	Cr 31	YCN43	650	9.3	Z.3	0.3794	0.3565	217.693	50.525	50.525	0.7143	0.7143
Cr 51 YCN46 650 9.5 Z.8 0.3698 0.3478 237.790 150.436 150.436 0.7470 0.7470 Cr 61 YCN42 640 9.8 3.8 0.3627 0.3443 247.597 140.143 133.113 0.7177 0.3892 Cr 71 YCT92 640 9.3 3.5 0.3577 0.3560 257.617 129.483 130.843 0.7493 0.6776 Cr 81 YCT2 645 9.5 3.2 0.376 0.3550 267.634 129.060 131.764 0.7754 0.7855	Cr 41	YCT97	640	9.2	3.7	0.3691	0.3495	227.644	52.808	29.884	0.7872	0.3672
Cr 61 YCN42 640 9.8 3.8 0.3627 0.3443 247.597 140.143 133.113 0.7717 0.3892 Cr 71 YCT92 640 9.3 3.5 0.3577 0.3560 257.617 129.483 130.843 0.7493 0.6776 Cr 81 YCT2 645 9.5 3.2 0.376 0.3550 267.634 129.060 131.764 0.7754 0.7855	Cr 51	YCN46	650	9.5	Z.8	0.3698	0.3478	237.790	150.436	150.436	0.7470	0.7470
Cr 71 YCT92 640 9.3 3.5 0.3577 0.3560 257.617 129.483 130.843 0.7493 0.6776 Cr 81 YCT2 645 9.5 3.2 0.376 0.3550 267.634 129.060 131.764 0.7754 0.7853	Cr 61	YCN42	640	9.8	3.8	0.3627	0.3443	247.597	140.143	133.113	0.7717	0.3892
Cr 81 YCT2 645 9.5 3.2 0.376 0.3550 267.634 129.060 131.764 0.7754 0.7853	Cr 71	YCT92	640	9.3	3.5	0.3577	0.3560	257.617	129.483	130.843	0.7493	0.6776
	Cr 81	YCT2	645	9.5	3.2	0.376	0.3550	267.634	129.060	131.764	0.7754	0.7855
Cr 91 YCN43 640 9.1 Z.3 0.3778 0.3576 277.678 152.034 152.034 0.8019 0.8019	Cr 91	YCN43	640	9.1	Z.3	0.3778	0.3576	277.678	152.034	152.034	0.8019	0.8019
Cr 101 YCT97 650 9.1 3.7 0.3709 0.3483 287.625 144.446 147.014 0.7629 0.7953	Cr 101	YCT97	650	9.1	3.7	0.3709	0.3483	287.625	144.446	147.014	0.7629	0.7955

Отбор событий-кандидатов на распад германия-71

Определение времени нарастания по форме импульса T_N .

Импульс от события распада ⁷¹Ge имеет время нарастания фронта, соответствующее точечной ионизации .

Для точечной ионизации изменение потенциала на аноде цилиндрического пропорционального счетчика описывается формулой Вилкинсона :

$$V(t) = \begin{cases} \frac{V_0}{T_N} [(t+t_0) \cdot \ln(1+\frac{t}{t_0}) - t], & \partial \pi \ 0 < t < T_N \\ \frac{V_0}{T_N} [T_N(\ln(\frac{t+t_0 - T_N}{t_0}) - 1) - (t+t_0) \cdot \ln(1-\frac{T_N}{t+t_0})], & \partial \pi \ T_N < t < \infty \end{cases}$$
[NIM A290 (1990) 158]

Полная шкала по оси Y имеет 256 каналов, соответствующих: 1.040 В (130 мВ/дел, К-пик) для канала 1 осциллоскопа, 0.160 В (20 мВ/дел, L-пик) для канала 2.

Ось Х -1024 нс.

Осциллограмма каждого импульса имеет 3 участка:

- базовая линия от *t*=0 до *t*≈120 нс,
- DC офсет (постоянное смещение), который появляется при открывании линейных ворот в момент времени *t* ≈ 120 нс,
- онсет (точка начала) импульса в момент времени $t \approx 180$ нс.

Импульсы от распада ⁷¹Ge в L и K пиках

Распределение событий по энергии и времени нарастания импульсов (T_N) для всех хромовых ранов.

На верхней панели - все события, зарегистрированные в течение первых 30 дней счета после извлечения. Положение L- и K-пиков ⁷¹Ge, определенное по калибровкам, показано темным цветом.

На нижней панели приведена та же гистограмма для всех событий, которые были зарегистрированы в течение такого же живого времени счета через 40 дней после извлечения.

Для оценки вкладов систематических неопределенностей в ожидаемые скорости захвата в зонах мишеней была уточнена конфигурация галлиевых мишеней

 $V_{II} = 6.5561 \text{ м}^3$, Macca = 39.9593 т Vc ϕ = 1.22545 м³, Macca = 7.4691 т

Для данной геометрии получены длины пробегов в сферической и цилиндрической мишенях, а также соответствующие им ожидаемые скорости образования в начале облучения источником ⁵¹Cr активностью 3.413 МКи

 $< L_{Inn} > = 52.03 \pm 0.04$ см $< L_{Out} > = 54.41 \pm 0.01$ см

(ошибки из метода Монте Карло для 107 событий)

		Неопределенность		
	Значение	Абсолютная	Относительная (%)	
Атомная плотность $D = \rho N_0 f_I / M$				
Плотность Ga, ρ (г Ga/см ³)	6.095	0.002	0.033	
Число Авогадро N_0 (10^{23} ат Ga/моль)	6.0221	0	0	
Молекулярный вес Ga M (г Ga/моль)	69.72307	0.00013	0.0002	
Атомная плотность $D (10^{22} \text{ at }^{71} \text{Ga/cm}^3)$	2.1001	0.0008	0.037	
Активность источника в исходное время А, МКи	3.414	0.008	0.23	
Сечение σ [10 ⁻⁴⁵ см ² / (⁷¹ Ga at ⁵¹ Cr распад)], Bahcall	5.81	+0.21,-0.16	+3.6,-2.8	
Длина пробега в Ga <l<sub>Out> (см)</l<sub>	54.41	0.18	0.3	
Длина пробега в Ga <l<sub>Inn> (см)</l<sub>	52.03	0.18	0.3	
Предполагаемая скорость образования (⁷¹ Ge ат/д), R _{Out}	72.59	+2.6,-2.1	+3.6,-2.8	
Предполагаемая скорость образования (⁷¹ Ge ат/д), R _{Inn}	69.41	+2.5,-2.0	+3.6,-2.8	

Результаты анализа скоростей захвата K+L пиков для каждых 10 извлечений двух мишеней, а также результаты объединенного анализа и ожидаемой скорости захвата.

$$R_{Inn} = 54.9 \pm 2.5 (stat) + 1.43 (syst) = 54.9 \pm 2.9$$

$$\frac{R_{Inn}}{R_{InnExpect}} = \frac{54.9 \pm 2.9}{69.41_{-2.0}^{+2.5}} = 0.791 \pm 0.05 \ (4.2\sigma)$$

$$\frac{R_{Out}}{R_{Out}} = 55.6 \pm 2.7 \text{ (stat)} \quad ^{+1.45}_{-1.39} \text{ (syst)} = 55.6 \pm 3.1$$

$$\frac{R_{Out}}{R_{OutExpect}} = \frac{55.6 \pm 3.1}{72.59^{+2.6}_{-2.1}} = 0.766 \pm 0.05 \text{ (4.75)}$$

TABLE I. A summary of the likelihood fits for the production rate from each extraction, the combined fit of all extractions, and the predicted production rate. The quoted measurement uncertainties are statistical.

		Inne	er Volume		Outer Volume				
Exposure	K+L	Number fit	⁵¹ Cr	Production	K+L	Number fit	⁵¹ Cr	Production	
Dates (DoY)	Candidates	to 71 Ge	Production	Rate $(Atoms/d)$	Candidates	to 71 Ge	Production	Rate $(Atoms/d)$	
186.585 - 196.376	180	176.3	175.5	$49.4_{-4.0}^{+4.2}$	181	133.4	129.6	$41.1^{+5.3}_{-5.2}$	
197.362 - 206.372	129	111.5	107.7	$44.9^{+5.9}_{-5.6}$	174	163.8	158.6	$63.6^{+5.7}_{-5.5}$	
207.282 - 216.374	132	117.6	115.4	$62.9^{+7.4}_{-7.1}$	116	92.5	88.2	$51.4^{+7.3}_{-6.9}$	
217.286 - 226.371	93	87.3	85.6	$73.3^{+8.6}_{-8.0}$	98	82.3	78.9	$66.6^{+9.8}_{-9.2}$	
227.258 - 236.458	134	60.2	58.4	$49.8^{+8.2}_{-7.7}$	120	64.0	59.5	$46.9^{+7.9}_{-7.2}$	
237.342 - 246.369	81	48.8	47.7	$69.5^{+12.0}_{-11.0}$	97	62.3	59.3	$87.3^{+13.2}_{-12.3}$	
247.243 - 256.368	91	45.0	43.9	$64.6^{+12.6}_{-11.6}$	69	38.0	34.4	$50.4^{+10.6}_{-9.6}$	
257.241 - 266.369	59	33.6	32.4	$53.8^{+12.2}_{-11.0}$	68	43.4	39.2	$59.7^{+11.7}_{-10.8}$	
267.240 - 276.369	106	23.7	22.7	$49.9^{+16.5}_{-14.9}$	66	20.2	17.0	$43.0^{+15.3}_{-13.5}$	
277.201-286.367	88	25.2	24.3	$69.1^{+19.4}_{-17.3}$	81	31.8	28.0	$78.8^{+20.0}_{-18.1}$	
Combined	1093	724.0	708.2	$54.9^{+2.5}_{-2.4}$	1069	738.8	699.8	$55.6^{+2.7}_{-2.6}$	
Predicted				$69.41^{+2.5}_{-2.0}$				$72.59^{+2.6}_{-2.1}$	

Согласуется с 1

 $R_{out} =$

Сечение захвата на Ga нейтрино от ⁵¹Cr (10⁻⁴⁵ см²)

Ref.	Cross section	
Bahcall et al. [PRC 56 , 3391 (1997)]	$5.81^{+0.21}_{-0.16}$	>
Frekers et al. [PRC 91 , 034608 (2015)]	5.93	
Barinov et al. [PRD 97 , 073001 (2018)]	5.910 ± 0.114	
Konstensalo et al. [PLB 795 , 542 (2019)]	5.67±0.06	
Semenov [Phys. At. Nucl. 83 , 1549 (2020)]	5.938±0.116	

Осцилляционный анализ

 $\chi^2(\Delta m^2, \sin^2(2\theta)) = (R^{meas} - R^{calc})^T V^{-1}(R^{meas} - R^{calc})$

 R^{meas} - вектор измеренных в эксперименте значений $R^{calc}(\Delta m^2, sin^2(2\theta))$ - вектор вычисляемых значений

V-ковариационная матрица ошибок, корреллированные - неопределенности сечения захвата

Вычисленные контуры уровней достоверности, соответствуют $\Delta \chi^2 \equiv \chi^2 - \chi^2_{min}$ с 2 d.o.f: $\Delta \chi^2 = 2.30, 6.18, 11.83$ для 68.27% (1 σ), 95.45% (2 σ) и 99.73% (3 σ) C.L., соответственно:

 $<\!\!L\!\!>$ – усредненная длина пробега v в объеме Ga: $<\!\!L_{Inn}\!\!>$ = 52.03 \pm 0.18 см $^{,}<\!\!L_{Out}\!>$ =54.41 \pm 0.18 см

 $r = \frac{R_{out}}{R_{Inn}} = \frac{0.766 \pm 0.05}{0.791 \pm 0.05} = 0.97 \pm 0.07$