ПРОТОТИПЫ БАКСАНСКОГО БОЛЬШОГО НЕЙТРИННОГО ТЕЛЕСКОПА

Ушаков Н.А.

ИЯИ РАН 9 декабря, 2022

Участники проекта

- 1. Гаврин Владимир Николаевич (рук.)
- 2. Гангапшев Альберт Мусаевич
- 3. Веретенкин Евгений Павлович
- 4. Воронин Дмитрий Михайлович
- 5. Лубсандоржиев Баярто Константинович
- 6. Луканов Арслан Дмитриевич
- 7. Малышкин Юрий Михайлович
- 8. Сидоренков Андрей Юрьевич
- 9. Смирнов Олег Юрьевич
- 10. Ушаков Никита Андреевич
- 11. Фазлиахметов Алмаз Наилович
- 12. Ибрагимова Татьяна Викторовна
- 13. Журунов Алексей Евгеньевич
- 14. Шихин Александр Александрович

- 15. Венгер Екатерина Александровна
- 16. Гаврилюк Юрий Михайлович
- 17. Гуркина Полина Петровна
- 18. Жорова Ольга Александровна
- 19. Канкулова Агнесса Хасановна
- 20. Кудрин Даниил Юрьевич
- 21. Кузминов Валерий Васильевич
- 22. Мартынов Александр Евгеньевич
- 23. Новикова Галина Яковлевна
- 24. Петков Валерий Борисович
- 25. Этезов Расул Аликович

Основные цели проекта

- Измерение потока геонейтрино;
- Регистрация СОО-нейтрино от Солнца;
- Регистрация изотропного потока антинейтрино, накопленного во Вселенной в результате гравитационных коллапсов ядер массивных звезд и образования нейтронных звёзд и черных дыр;
- Изучение динамики взрыва сверхновой путем регистрации интенсивности и спектра нейтринного всплеска;
- Регистрация общего потока антинейтрино от всех промышленных ядерных реакторов на Земле;

Рядприкладныхзадач.Втомчисле,способствованиевозрождениюразработокипроизводствавакуумныхитвердотельныхфотодетекторов в России!!!

Стадии проекта

Первый этап – строительство прототипа с жидким сцинтиллятором массой 0.5 т, расположенного в лаборатории галлий-германиевого нейтринного телескопа БНО ИЯИ РАН (завершено).

Второй этап – создание прототипа с массой жидкого сцинтиллятора 5 т, также расположенного в лаборатории ГГНТ, для тестирования применяемых научнотехнических методов (на стадии сборки детектора).

Третий этап – проектирование и строительство детектора с массой сцинтиллятора порядка 100 т. Возможные задачи: Проверка галлиевой аномалии (TMG), проверка качества сцинтиллятора (CTF, OSIRIS) перед заполнением большого детектора, стерильное нейтрино (144Ce) и др.

Четвертый этап – проектирование, строительство и запуск полномасштабного детектора, способного решать весь комплекс задач проекта.

Карта атомных электростанций

Поток реакторных нейтрино в Лаборатории ГГНТ (Ушаков Н.А.)

Энергия, МэВ

Местоположение	Поток геонейтрино, TNU	Поток реакторных нейтрино в диапазоне геонейтрино, TNU	N _{react} /N _{geo}
БНО	50.8	13.2	0.26
Gran Sasso	40.7	23.2	0.57
Kamioka	34.5	43.7	1.27
Sudbury	50.8	51.7	1.02
Jinping	59.4	5.6	0.09
Pyhasalmi	51.5	19.4	0.38
Hawaii	12.5	1.1	0.09
JUNO	39.7	307.8	7.75

Система хранения и очистки воды

(Харнасов Н.Г., Жорова О.А.)

Осветление, обезжелезивание, дехлорирование, умягчение и обеззараживание

Скорость очистки воды: **1 м³ /час**

Проводимость воды: **0.05 мкСм**

Сцинтиллятор

сцинтилляционная смесь: LAB + 2 Γ/π PPO + 10 м Γ/π bis-MSB

ЛАБ российского производства (ООО Киришинефтеоргсинтез)

Кремнийорганические сцинтилляционные добавки. NOL37.

(Сидоренков А.Ю.)

Световыход сцинтиллятора на основе LAB с использованием **NOL37** почти **в 2 раза выше**, чем при использовании **PPO** Быстрая компонента сцинтиллятора на основе LAB с использованием NOL37 медленнее, чем при использовании PPO, однако на неё приходится большая часть излучения (примерно на 20%)

Параметр	Значение	
Импульсы темнового тока	1.74 ± 0.87	
Пик/долин	3.73±0.56	
SPE разрешение	0.68±0.06	
Джиттер	3.01±0.24	

ФЭУ Hamamatsu R7081-100 WA-S70 (Ушаков Н.А.) Спектр квантовой эффективности ФЭУ 38.9 1.0 Спектр высвечивания РРО Спектр высвечивания bis-MSB Квантовая эффективность, % Относительный световыход 0.8 31.1 сцинтиллятора 23.3 0.6 15.6 0.40.2 7.8 0.0 0.0 300 400 500 600 700 Длина волны, нм

Квантовая эффективность достигает почти **40 %** при длине волны **390 нм.** Удельная квантовая эффективность составляет **34.4%** для **РРО** и **34.3%** для **bis-MSB.**

Аномально длинные послеимпульсы

Пик задержки: **90±3 мкс** Наблюдается явный **однофотоэлектронный** характер Вероятность возникновения **не более 0.01%** на фотоэлектрон

В низкофоновой лаборатории БНО ИЯИ РАН был исследован радиоактивный фон полиметилметакрилата, стали, пластика и ФЭУ (Гаврилюк Ю.М., Казалов В.В., Горбачёв В.В.)

Энергетический отклик детектора после калибровки радиоактивными источниками составил **172.6 ф. э. на МэВ** (Ушаков Н.А., Шихин А.А.)

Стабильная работа ФЭУ на протяжении **трёх** лет эксплуатации, световыход сцинтиллятора за **два** года снизился лишь на **4%**

Измеренный поток мюонов в ЛГГНТ составил (4.02±0.24)*10⁻⁹ см⁻²с⁻¹ (время экспозиции 2724 часа) (Ушаков Н.А.)

заполнение в сферу осуществляется так же после продувки азотом.

Контейнер из PE-HD

для хранения сцинтиллятора

в азотной атмосфере;

Мюонный детектор на основе пластикового сцинтиллятора и кремниевых ФЭУ (Воронин Д.М.)

Катушки магнитной защиты: 12 вертикальных и 5 горизонтальных (Луканов А.Д.)

Светопоглащающая плёнка для оптического разделения сцинтилляционной мишени и черенковского детектора

Карбоновые концентраторы света с посеребрённой внутренней и светопоглощающей наружной поверхностями (Фазлиахметов А.Н.)

Двенадцать 8-дюймовых ФЭУ Hamamatsu R5912-100 WA-S70 для мюонного водного черенковского детектора (Ушаков н.А.)

Очистка сцинтиллятора

(Веретёнкин Е.П., Новикова Г.Я.)

- 1. Очистка ЛАБ методом сорбции на Al_2O_3 ;
 - При соотношении Al₂O₃ к LAB 1:10 уран и торий почти полностью сорбируются;
 - При соотношении Al₂O₃ к LAB 1:2 полностью исчезают пики на 350, 368, 389 нм от 9-метилантрацена;
 - Неэффективно для очистки ЛАБ и РРО от калия;

- 2. Очистка ЛАБ и РРО от калия методом водной экстракции;
- 3. Фильтрация на фторопластовом микропористом фильтре 0.2 мкм для очистки от пыли;

Активная компенсация магнитного поля

Измеренные значения магнитного поля в месте расположения прототипа: Горизонтальная компонента ($\vec{X} * \vec{Y}$) – **0.265 Гс**, вертикальная (\vec{Z}) – **0.25 Гс**.

Наиболее оптимальным количеством вертикальных колец является **12, по 7 витков** для каждого кольца, а горизонтальных – **5, по 10 витков**, при этом сила тока во всех кольцах составляет **2 А**.

Результаты

- Первая стадия проекта (прототип с массой мишени 0.5 тонн) завершена;
- Измерен поток мюонов в месте расположения детектора: (4.02±0.24)*10⁻⁹ см⁻²с⁻¹;
- Измерен радиоактивный фон материалов элементов обоих прототипов;
- Созданы акриловая сфера, стальной каркас и стальной водный резервуар пятитонного прототипа;
- Приобретены 6 тонн ЛАБа, разработана методика очистки сцинтиллятора;
- Масштабирована система регистрации для пятитонного прототипа (ФЭУ и электроника, 42 канала);
- Измерены характеристики пятидесяти 10-дюймовых основных ФЭУ R7081-100 и двенадцати 8-дюймовых ФЭУ R5912-100 для системы мюонного вето для пятитонного прототипа;
- Рассчитан оптимальный профиль концентраторов света с использованием метода струн, произведён тестовый экземпляр;
- Разработана система компенсации магнитного поля Земли для пятитонного детектора.

Перспективы

Ближайшие планы

- Модернизация алгоритмов и программного обеспечения для обработки сигналов;
- Тестирование эффективности концентраторов света;
- Модернизация системы очистки и хранения воды (очистка от ²²²Rn, циркуляция воды в детекторе);
- Изготовление сорбционной установки с модулем растворения сцинтилляционных добавок;
- Установка азотной станции в ЛГГНТ;
- Сборка 5-тонного прототипа детектора;
- Очистка ЛАБа (6 т) и РРО от радиоактивных и пр. примесей;
- Модернизация системы регистрации, использование TDC V1290N (25 пс) для локализации сцинтилляционной вспышки.

Дальнейшие развитие

- Создание системы мюонного вето пятитонного прототипа;
- Создание магнитной защиты пятитонного прототипа;
- Разработка методов и средств исследования рассеяния и поглощения света в жидких сцинтилляторах;
- Тестирование на полутонном прототипе сцинтиллятора с добавлением новых кремнийорганических добавок;
- Создание лаборатории для масштабного тестирования, отбора и исследования параметров элементов детекторов (фотоумножителей, сцинтиллятора и т.п.);
- Сотрудничество с китайскими коллегами (ФЭУ, сцинтилляционные добавки, электроника);
- Разработка детектора с массой жидкого сцинтиллятора порядка 100 тонн.