

Исследование нейтринных осцилляций в экспериментах K2K и T2K

М. Хабибуллин (ИЯИ РАН)

Юбилейный семинар: 70-лет Ю.Г. Куденко 5 октября 2021 г.

Осцилляционные параметры нейтрино

- Нейтрино (при *рождении* и *детектировании)* описываются собственными состояниями *слабых взаимодействий* |ν_α> (α= e; μ; τ)
- $|\boldsymbol{\nu}_{\alpha}\rangle$ суперпозиция собственных массовых состояний $|\boldsymbol{\nu}_{i}\rangle$ (*i* = 1, 2, 3): $|\boldsymbol{\nu}_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\boldsymbol{\nu}_{i}\rangle$
- Связь через унитарную 3×3 матрицу U (PMNS)

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

PMNS ≡ Pontecorvo-Maki-Nakagawa-Sakata

Осцилляции нейтрино

(в случае Дираковского нейтрино)

 $P_{\alpha \to \beta} = |\langle \nu_{\beta}(L) | \nu_{\alpha} \rangle|^{2} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-i \frac{m_{i}^{2} L}{2E}} \right|^{2}$ Вероятность перехода $\mathbf{P}(\nu_{\alpha} \to \nu_{\beta})$ зависит от

- трёх углов смешивания θ₁₂, θ₂₃, θ₁₃
- одной СР нарушающей фазы δ_{СР}
- двух разностей Δm²₃₂, Δm²₂₁*)
- **иерархии масс** (*m*₃>*m*₂ или *m*₃<*m*₂?)
- энергии нейтрино $oldsymbol{E}$
- пройденного расстояния L
 - *) $\Delta m_{ij}^2 \equiv m_i^2 m_j^2$, $i \neq j$ $\Delta m_{12}^2 + \Delta m_{13}^2 + \Delta m_{23}^2 = 0$

K2K (KEK-to-Kamioka)

Первый ускорительный нейтринный эксперимент с длинной базой

Эксперимент К2К (1999 – 2004)

- Цель **К2К**: изучение осцилляций ν_µ → ν_µ ("исчезновение")
- Набор статистики: **1999**-2001; 2003-**2004**; всего **0.9** × **10²⁰ РОТ***)
- Источник: протонный синхротрон, KEK-PS, $E_p = 12$ ГэВ; Al мишень
- Ближние детекторы: **1 kt** water Cherenkov; SciFi; LeadGlass/SciBar; MRD
- Дальний детектор: **50 kt** water Cherenkov (Super-Kamiokande) $L = 250 \text{ km} / \langle E_v \rangle = 1.3 \text{ GeV}$

*) POT = Protons On Target

Эксперимент К2К: результаты

• К2К обнаружил дефицит мюонных нейтрино (v_µ→v_µ): зарегистрировано **112** событий (*без* осцилляций ожидалось $158.1^{+9.2}_{-8.6}$ событий). Отсутствие осцилляций исключено на уровне 4.3σ • Осцилляционные параметры соответствуют атмосферным значениям, полученным в events/0.2GeV эксперименте Супер-Камиоканде (SK): $\Delta m_{32}^2 \approx 2.8 \times 10^{-3} \,\mathrm{eV^2/c^4}; \sin^2 2\theta_{23} \approx 1.0$ • Подтверждено искажение энергетического

спектра нейтрино в дальнем детекторе SK

Эксперимент К2К: участники

1998 г.: институты из **3** стран (США ; Южная Корея и Япония)

- 2004 г.: институты из 10 стран (+ Испания; Италия; Канада; Польша; Россия; Франция; Швейцария)
- От России: в **2002 г.** группа ИЯИ РАН (В.А. Матвеев, С.П. Михеев, Ю.Г. Куденко и др.) вступила в **К2К** (и в проект **Т2К**)

Эксперимент T2K (Tokai-to-Kamioka)

Эксперимент Т2К: краткая история

2001: Письмо о намерениях (*Letter of Intent*) 2001: начало строительства протонного ускорителя J-PARC 2004: начало строительства нейтринного канала 2009: первый пуск ускорителя, приемка 2010: начало набора данных (v-режим), мощность пучка 50-100 кВт **2011**: указание на обнаружение $v_{\mu} \rightarrow v_{e}$ осцилляций **2013**: открытие $v_{\mu} \rightarrow v_{e}$ осцилляций 2014: антинейтринный режим, первые ограничения **б**_{ср} 2016: Breakthrough Prize (K2K/T2K и 4 других эксперимента) **2019**: первые указания на нарушение **СР** в v-осцилляциях 2020-2021: гадолиний в SK, Gd₂(SO₄)₃, 0.01%

Primary goals

(as in **2006** T2K proposal):

- 1. The discovery of $v_{\mu} \rightarrow v_{e}$ (i.e., the confirmation that $\theta_{13} > 0$).
- 2. Precision measurements of oscillation parameters in v_{μ} disappearance.
- 3. Search for sterile neutrinos.

Current goals (2021):

- 1. CP violation (δ_{CP}) in v-sector?
- 2. Precision measurements of θ_{23} : which octant ($\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$)?
- 3. Mass ordering: $m_3 > m_2$ or $m_3 < m_2$??

Источник нейтрино

Протонный комплекс J-PARC (Japan Proton Accelerator Research Complex)

Мишень: графит $(\emptyset 26 \text{ mm} \times 914 \text{ mm})$ $\mathbf{p} + \mathbf{C} \rightarrow \pi^{+/-} + \mathbf{X}$ $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$ 3 э/м (horns): ±250 кА **Е**_v (пик, 2.5°): ~0.6 ГэВ Состав пучка (в пике): v-режим: ~97% v_u $\overline{\nu}$ -режим: ~96% $\overline{\nu}_{\mu}$

<u>3 ускорителя:</u> 1) линейный (400 МэВ) 2) малое кольцо (3 ГэВ) 3) основное кольцо (30 ГэВ)

Энергия протонов: 30 ГэВ Мощность пучка: ~515 кВт Структура: 8 bunches Период: 2.48 с Интенсивность: ~2.6 Е14 ррр [ppp = protons per pulse]

- кинематика распада $\pi' \rightarrow \mu' + \nu_{\mu}$: узкии спектр нейтрино под небольшим углом к оси пучка, пик E_v (@2.5°) ~0.6 ГэВ.

- В Т2К пик для угла 2.5° соответствует осцилляционному максимуму при L = 295 км.
- При этом подавляются нейтрино с высокой энергией

Ближний детектор INGRID (on-axis) **т**г/

Ближний детектор ND280 (off-axis @2.5°) <u>так</u>

Ближний детектор ND280

- Трекер = 3 ТРС + 2 FGD в магнитном поле 0.2 Т (FGD1: plastic scintillator; FGD2: plastic scintillator +water)
- POD; ECaL; SMRD

<u>Задачи ND280</u>

измерение параметров нейтринного пучка до осцилляций;

FGD = fine-grained

ограничение неопределённостей нейтринного потока и сечений нейтринных взаимодействий

detector

CCQE = charged-current quasi elastic

projection chamber

TPC = Time

Range Detector

ECaL = e/m calorimeter

P0D = π^0 detector

Ближний детектор ND280: вклад ИЯИ <u>так</u>

 Сцинтилляционные счетчики для SMRD детектора (в кооперации с ООО «УНИПЛАСТ», г. Владимир);
 НИОКР по улучшению лавинных микропиксельных фотодиодов (ЦПТА,

Москва) → Серия Рабочих Совещаний **PhotoDet** (*PD15* – в Троицке, 2015)

Ближний детектор WAGASCI/BabyMIND: <u>так</u> (off-axis @1.5°)

WAGASCI (WAter-Grid-SCIntillator) – детектор,
сцинтилляционные ячейки которого заполнены водой.
Baby MIND - магнитный нейтринный детектор (сэндвич из железа и пластиковых сцинтилляторов)
Wall MRD – сцинтилляционный детектор мюонного пробега
Весь комплекс изучает взаимодействия нейтрино (1-2

Гэв) с ядрами кислорода (в воде) и углерода (в пластике)

Вклад ИЯИ РАН:

- 1) сцинтилляционные счетчики для BabyMIND
- 2) сцинтилляционные счетчики для Wall MRD

Дальний детектор T2K: Super-Kamiokande T2K

Super-Kamiokande:

- ✓ 50 тыс. тонн чистейшей воды
- Водный черенковский детектор
- ✓ высокоэффективное (>99%) разделение **µ**- и **e**- сигналов
- ✓ GPS синхронизация с пучком **J-PARC**

Внутренний детектор (ID):

- ✓ >11000 ФЭУ (∅50 см)
- ✓ 40% photo-coverage

Внешний детектор (**OD**):

✓ ~2000 PMTs (Ø20 cm)

Times (ns)

Анализ данных Т2К

- Вычисляются параметры нейтринного потока, сечений взаимодействия и систематики для ближнего и дальнего детекторов (используются данные J-PARC, NA61/SHINE, других экспериментов и моделирование – FLUKA, GEANT)
- В одном подходе данные ближнего детектора ND280 используются для ограничения неосцилляционных параметров (нейтринного потока, сечений взаимодействия и систематических погрешностей); затем осцилляционные параметры получаются подгонкой при анализе всех 5 наборов данных SK одновременно методом отношения функций правдоподобия (binned likelihood-ratio method):

-2ln Досцил.параметры, неосц. параметры)

- В другом подходе все параметры (осцил.параметры, неосц. параметры) подгоняются одновременно для каждого события из данных ND280 и SK
- Оба подхода показывают согласующиеся результаты
 05.10.2021
 Эксперименты К2К и Т2К. Семинар: 70 лет Ю.Г. Куденко

* ℓ -CCQE = Charged-Current Quasi Elastic: $\nu_l n \rightarrow l^- p$ e-CC1 π + = Charged-Current One pion: $\nu_e N \rightarrow e^- N' \pi^+$

Отбор событий в SK

Подавление фона от

- космических лучей,
- радиоактивности окружающей среды,
- фоновых нейтринных процессов,

Осцилляционные параметры δ_{CP} и θ_{13} <u>тек</u>

 δ_{CP}

- Ограничения на θ₁₃ по результатам анализа только данных Т2К согласуются с результатами реакторных экспериментов
- Использование ограничения на θ₁₃ из *реакторных* экспериментов (*Daya Bay* и др.) позволяет ограничить δ_{CP}

05.10.2021

Поиск СР нарушения: ограничение δ_{CP} <u>τ</u>2

24

После публикации Nature 580, 339-344 (2020) № 2 обновлен анализ (сечения/поток, SK калибровка и др.), проанализировано +~30% данных (Run 10) 2 <u>В результате:</u>

- СР сохранение исключается на уровне достоверности 90%
- Наилучшее значение фазы δ_с близко к максимально нарушающему СР (δ^{MAX}_{CP}=-π/2)
- Значения $\delta_{CP} = \pm \pi$ находятся на границе 25

Confidence level	Interval (NH)	Interval (IH)
1σ	[-2.66, -0.97]	
90%	[-3.00, -0.49]	[-1.79, -1.09]
2σ	$[-\pi, -0.26] \cup [3.11, \pi]$	[-2.20, -0.75]
3σ	$[-\pi, 0.32] \cup [2.63, \pi]$	[-2.82, -0.14]

Largest $\Delta \chi^2$ change seen in any of our robustness studies would cause left (right) edge of 90% interval to move by 0.073 (0.080)

Что дальше?

<u>Анализ:</u>

- обновление анализа данных ближнего ND280 (сечения; 4πсобытия и др.) и дальнего SK детекторов (multi-ring события)
- объединенный анализ T2K-Super-К (атмосферные нейтрино)
- объединенный анализ T2K-NOvA

<u>«Железо»:</u>

- модернизация ближнего детектора ND280 (см. доклад С. Суворова) -> уменьшение систематических погрешностей
- обновление систем питания и RF ускорительного комплекса J-PARC -> увеличение мощности пучка с ~500 кВт до 1.3 МВт (2026 г.)

<u>Данные:</u>

 Т2К продолжит набирать статистику до 2026 г. [дальше – эксперимент Гипер-Камиоканде, см. доклад А. Измайлова]

К2К (1999 – 2004 гг.):

• подтверждены осцилляции мюонных нейтрино (дефицит)

T2K (2010 – 2026?):

- За 11 лет сеансов (23.01.2010 27.04.2021) накоплено 3.82 × 10²¹ РОТ (v: 2.17 × 10²¹; v : 1.65 × 10²¹ РОТ); достигнута мощность 522 кВт
- Результаты для СР нарушающей фазы указывают на значение, близкое к максимальному δ^{MAX}_{CP}=-π/2 (для нормальной иерархии масс)
- В 2022 г. планируется модернизация ближнего детектора ND280 и продолжение набора данных

С Днем Рождения, Юрий Григорьевич! 🞞 🥅

2006 г.

2019 г.

Эксперимент Т2К: участники (2021 г.)

 \sim 470 members, 74 Institutes, 13 countries + CERN + JINR

Дополнительные слайды

Проверка ограничения δ_{CP}

Can sequentially add improvements to the OA2018 analysis (Nature publication), and examine the measurement sensitivity:

A: Nature result

B: Improved cross section and flux models

C: Using the updated reactor constraint on θ_{13} (from 2019 Particle Data Group)

- D: New Super-K calibration, causing some events to drop in and out from samples
- E: Addition of the new Run 10 T2K data

Greatest change in our measurement (slightly weaker constraint) is driven by the addition of new data

	T2K only			T2K + reactor				
Configuration	$\delta_{\mathrm{CP}}^{\mathrm{best-fit}}$	$\Delta \chi^2_{\rm NH}(0)$	$\Delta \chi^2_{ m NH}(\pi)$	width	$\delta_{\rm CP}^{\rm best-fit}$	$\Delta \chi^2_{\rm NH}(0)$	$\Delta \chi^2_{\rm NH}(\pi)$	width
A = OA2018 (run1-9d)	-2.01	4.80	2.60	3.39	-1.76	8.27	6.33	2.39
B = A + 2020xsec + BANFF	-2.01	4.55	2.46	3.52	-1.76	8.11	6.04	2.51
C = B + PDG2019 RC	-2.01	4.52	2.45	3.52	-1.76	7.72	5.71	2.51
D = C + SK reprocessing	-2.01	3.67	1.87	3.77	-1.76	7.10	5.40	2.51
E = D + run10 = OA2020	-2.26	3.23	1.36	4.15	-1.88	5.83	4.08	2.76

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \text{ vs } P(\nu_{\mu} \rightarrow \nu_{e})$

Число событий и систематические ошибки

	Expected events (MC)					Systematic
Mode	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$	Data *)	uncertainties **)
			-	-		(%)
$ u_{\mu} $	356.48	355.76	356.44	357.27	318	3.0
$\overline{\nu}_{\mu}$	138.34	137.98	138.34	138.73	137	4.0
$ u_{e} $	97.62	82.44	67.56	82.74	94	4.7
$\nu_{\rm e} 1 \pi^+$	9.20	8.01	6.51	7.71	14	14.3
ν _e	16.69	18.96	20.90	18.63	16	5.9

*) 1.96x10²¹ (v) + 1.64x10²¹ ($\overline{\nu}$) POT

**) Систематические ошибки подавлены благодаря ограничениям ближнего детектора ND280, например, для ν_µ 11.1% -> 3.0%; ν̄_µ: 11.3% -> 4.0%; ν_e: 13.0% -> 4.7%; ν̄_e: 12.1% -> 5.9%; ν_e1π⁺: 18.7%-> 14.3%

Beposthoctb nepexoda
$$P(v_{\mu} \rightarrow v_{e})$$

 $P(v_{\mu} \rightarrow v_{e}) \approx 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2s_{13}^{2}\right)\right)$
 $= 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$
 $= 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$
 $= 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$
 $= 4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\Delta_{21}$
 $= 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Delta_{32}\sin\Delta_{31}$
 $= 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\Delta_{32}\sin\Delta_{31}$
 $= 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}}\cos\Delta_{32}\sin\Delta_{31}$
 $= 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}}$
 $= 2\sqrt{2}G_{E}n_{e}E = 7.56 \times 10^{-5} \text{eV}^{2}\frac{\rho}{g\text{cm}^{-3}}\frac{E}{GeV}$
replace δ by $-\delta$ and a by $-a$ for $P(v_{\mu} \rightarrow v_{e})$

AN AN

Модернизация ближнего детектора

Scintillator target (Super-FGD): 05.10.2021 **~2 million** cubes 1 cm³ cubes 3 fibers per cube

Эксперименты К2К и Т2К. Семинар: 70 лет Ю.Г. Куденко

<u>2022 г. (план):</u>

π⁰-детектор (POD) будет заменён
активной 3D нейтринной мишенью из
сцинтилляционных кубиков (Super-FGD);
и двумя горизонтальными TPC (HTPC)
Цели: а) уменьшение систематики до 3-4%;
b) 4π-аксептанс для мюонов; с) снижение порога
регистрации протонов (>300 МэВ/с); d) детектирование
нейтронов

Эксперимент Гипер-Камиоканде (НК) 🗾

2027 г. (план): старт **НК/Т2НК**

- Усиленная мощность пучка J-PARC MR: ~1.3 МВт
 - 2.7×10²² РОТ (за 10 лет)
- Модернизированный ближний детектор ND280
- Новый промежуточный детектор (IWCD)* @~1 км
- Новый дальний детектор
 - с такой же пролетной базой, 295 км,
 - под тем же углом (off-axis), 2.5°
 - 71 м (высота), 68 м (диаметр)
 - общий объём 260 тыс. тонн
 - fiducial volume **187 тыс. тонн** (~8 x SK)
 - 40% photocoverage
- Улучшенная чувствительность (3-5 of CPV discovery)
- Богатая (астро)физическая программа

* IWCD = Intermediate Water Cherenkov Detector

