Редкие распады каонов

В.Ф. Образцов, "НИЦ КИ" - ИФВЭ, Протвино ЮГК-70, ИЯИ РАН, 5 Октября 2021

- Эксперименты E246 KEK, E949(E787) AGS BNL
- Исследование супер-редкого распада $K^+ \rightarrow \pi^+ \nu \nu$ в NA62
- Исследование распадов К⁺ на установке ОКА

• σ_{\perp} in $K \rightarrow \mu \nu \pi^0$ (KEK E246))

 $\sigma_{\perp}^{\mu} = \frac{\vec{\sigma}_{\mu} \cdot (\vec{p}_{\pi} \times \vec{p}_{\mu})}{|\vec{p}_{\pi} \times \vec{p}_{\mu}|} \sim m_{K} \cdot m_{\mu} \cdot Im\xi; \xi = f_{-}/f_{+} \text{ Unique feature: } \sigma_{\perp}^{FSI} \sim 4 \cdot 10^{-6}$ In some models (Weinberg multi-Higgs), $\sigma_{\perp} \sim 10^{-2}$

 $\sigma_{\perp}^{K\mu3} < 4.3 \cdot 10^{-3} \ 90\%$ C.L. $\rightarrow |Im\xi| < 1.3 \cdot 10^{-2}$; $\sigma_{\perp}^{K\mu2\gamma} < 3.1 \cdot 10^{-2} \ 90\%$ C.L. E×B separated 550-600 MeV K^+ beam(K5); 12 GeV PS 2.7 Tp/cycle; 0.6/3 sec. cycle; $2.7 \times 10^5 K^+$ /cycle; $15\% K^+$

- э.м. калориметр 768 счетчиков CsI(Tl)
- Набор данных 1996-2000 гг. ~4М Кµ3

E949(E787) AGS BNL распад $K^+ \rightarrow \pi^+ v v$

30 GeV AGS 65 Tp/cycle; 4.1/6.5 sec. cycle; $3 \times 10^6 K^+$ /cycle; $70\% K^+$

Е949 был принят с 60 неделями пучкового времени, работал 12 недель в 2002 г.

Распады $K \rightarrow \pi$ vv (мотивация)

FCNC – процесс, подавлен GIM, Br ~ $|V_{ts} \times V_{td}|^2$; Очень точно вычисляется в CM: r~ 1/m_t, 1/m_z, <\pi|H|K> нормируется на Br(Ke3); точность определяется эксп. данными по элементам CKM

Распады К $\rightarrow \pi$ vv (экспериментальный статус)

Эксперимент NA62

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC) ~200 участников

Цель- набрать O(100) событий $K^+ \rightarrow \pi^+ \nu \nu$ измерить Br с точностью ~ теоретической (10%)

2005	Предложение эксперимента			
2010	Технический проект			
2014-2015	Запуск установки			
2016 Первый набор статистики (4 недели)				
~ 10 ¹¹ распадов К ⁺				
2017-2018 Набор статистики (6-7 мес.)				
	~ 8 х 10 ¹² распадов К ⁺			
JHEP 06(2021) 093 Опубликован результат 2016-2018 г.				

2021-2023 Run2 В 2021 г. Июль-Ноябрь

SPS р пучок 400 ГэВ/с 3.1012/3.5 сек

Установка NA62

Вторичный пучок 75 ГэВ/с, $\Delta p/p \sim 1\%$ RICH μ/π идент. К⁺(6%) π⁺(70%) р(24%) 750 Мгц Магнитный спектрометр 4 ст. γ-Veto STRAW в вакууме [m] ² **STRAW** Дифф. С счетчик LAV ANTI-0 триггер на К+ 1 Target KTAG GTK Детектор пучка Vacuum 0 "Gigatracker" 3 Si станции RICH -1 Decay Region -2

1атм. Ne

CHOD

RC

LKr

MUV1,2

Iron

SAC

Dump

Установка NA62

Выделение сигнала, подавление фонов

Отбор событий

- σ_t ~ 100 псек.
- π^+ идентификация: $\epsilon(\mu) = 10^{-8}$ (при 64% $\epsilon(\pi^+)$)

•
$$\gamma$$
 - Beto $\epsilon(\pi^0) = 10^{-8}$

• Один вторичный трек

•
$$105 < Z_{vertex} < 165 \text{ M}$$

• 15 < p_{π^+} < 35 ГэВ для работы RICH и E_{miss} > 40 ГэВ

Обработка сеансов 2016-2018 гг.

SES= $(1.11 \pm 0.07) \times 10^{-11}$

Процесс	Число событий в области сигнала
$K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} ~ \nu ~ \nu$	10.01 ± 1.26
$\begin{split} \mathrm{K}^{+} &\to \pi^{+} \pi^{0} (\gamma) \\ \mathrm{K}^{+} &\to \mu^{+} \nu (\gamma) \\ \mathrm{K}^{+} &\to \pi^{+} \pi^{-} \mathrm{e}^{+} \nu \\ \mathrm{K}^{+} &\to \pi^{+} \pi^{+} \pi^{-} \\ \end{split}$ Фон от пучка	$\begin{array}{l} 0.75 \pm 0.04 \\ 0.49 \pm 0.05 \\ 0.50 \pm 0.11 \\ 0.22 \pm 0.09 \\ 3.3 \pm 0.9 \end{array}$
Сумма фон	5.28 ± 0.86
Pileup T KTAG GTK1 GTK2 V V Collimator Collimator Collimator	HANTI π Fake Vertex

Fiducial decay region

STRAW1,2

STRAW3,4 RICH

Sketch not to scale!

Результат 2016-2018

20 соб. фон 7±0.9

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

Результат 2016-2018

$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

Ближайшие планы NA62

- В 2021-2024 гг. будет продолжен набор статистики (проектная интенсивность, вето-годоскоп, вето-счетчики, 4-ая плоскость GTK)
- Цель набрать ~ 100 событий

ОКА: Эксперимент с RF-сепарированным К⁺ пучком на У-70 ИФВЭ-ИЯИ-ОИЯИ

• Основной триггер

 $Trg = S_1 \cdot S_2 \cdot S_3 \cdot \check{C}_1 \cdot \check{C}_2 \cdot \bar{S}_{bk} \cdot (\Sigma_{GAMS} > \mathsf{Mip})$

• Контрольные триггера

 $S_1 \cdot S_2 \cdot S_3 \cdot C_1 \cdot C_2 \cdot S_{bk} \cdot MC / 4$ $S_1 \cdot S_2 \cdot S_3 \cdot C_1 \cdot C_2 \cdot S_{bk} / 10$

Параметры сверхпроводящих дефлекторов		Основные параметры пучка:	
Рабочая частота,(S-band)	2865 MHz	Энергия протонного пучка	50-65 ГэВ
Длина волны, λ	~10.5 см	Интенсивность р пучка	$7 \times 10^{12} \text{ ppp}$
Длина дефлектора	2.74 м	Энергия вторичного пучка	12.5, 17.7 ГэВ
Число ячеек/дефлектор	104	Длина канала	~200 м
Среднее поле	~1(0.6)МВ/м	Интенсивность K ⁺ в конце канала $\sim 0.4 \times 10^6$	
Рабочая температура	1.8 K	К+ в пучке	12 - 18 %

- 1. Пучковый спектрометр: 1мм ПК, ~1500 каналов; сцинтилляционные и черенковские счетчики
- 2. Распадный объем с охранной системой: 11м; Вето: 670 сэндвичей свинец-сцинтиллятор 20* (5мм Sc+1.5 мм Pb), светосбор- WLS
- 3. ПК, ST, ДТ основного магнитного спектрометра: ~5000 кан. ПК (2 mm) + 1300 ST и ДТ(1 и 3 cm)
- 4. Матричный годоскоп ~300 каналов, светосбор WLS+SiPM
- 5. Магнит: аппертура 200*140 см²
- 6. Гамма-детекторы: ГАМС-2000, ЕГС-БГД всего ~ 4000 счетчиков из свинцового стекла.
- 7. Мюонная идентификация: адронный калориметр ГДА-100 + 4 мюонных счетчика

Канал 21К, Установка «ОКА»

RF1 дефлектор в канале

"Хвост" канала

Охранная система распадного объема

Общий вид установки ОКА

Straw и ДТ камеры, матричный годоскоп, электромагнитный калориметр ГАМС-2000

Избранные результаты $K^+ \rightarrow \pi^+ \pi^- \gamma$

Сеансы 2010-2013, 2018 $N_{\rm K} \sim 5 \ge 10^{10}$

Основные направления анализа данных:

Распады: Ke3, Kµ3, K⁺ $\rightarrow \mu^+\nu_s$, K⁺ $\rightarrow \pi^+\pi^0$ P, Ke3 γ , Kµ3 γ , K⁺ $\rightarrow \pi^+\pi^+\pi^-\gamma$, K⁺ $\rightarrow \mu^+\nu\gamma$, K⁺ A \rightarrow K⁺ π^0 A

Распад $K^+ \to \pi^+ \pi^- \gamma$ наблюдался в ИТЭФ В.В. Бармин и др., ЯФ 50(1989)679-682 7 соб. $E^*_{\gamma} \sim 5-10$ МэВ, измерен Вг.

Избранные результаты: $K^+ \rightarrow \mu^+ \nu \gamma$ Eur.Phys. J.C (2019) 79

Наблюдение χ аномалии в процессе K⁺ Cu → K⁺π⁰ Cu JETP, 2020, v. 131, pp. 928-939; ЖЭТФ , 2020 т. 158, №6, стр. 1070-1082

