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Quite unusual results
found in our papers:
A.D., A. Lepidi, G. Piccinelli,
JCAP 0902 (2009) 027; Phys. Rev D, 80
(2009) 125009; JCAP 08 (2010) 031;
A.D.,A. Lepidi Phys.Lett. A375(2011) 3188.
Similar results but by another method:
G. Gabadadze, R.A. Rosen,
Phys. Lett. B 658 (2008) 266;
JCAP 0810 (2008) 030;
JCAP 1004 (2010) 028.

2



Textbook formula for screening:

U(r) =
Q

4πr
→
Q exp(−mDr)

4πr
,

because the time-time component of the
photon propagator acquires “mass”:

k2→ k2 + Π00(k) = k2 +m2
D ,

where e.g. for relativistic fermions

m2
D = e2

(
T 2/3 + µ2/π2

)
.

3



In presence of charged particle condensate
the screening is not exponential but power
law and oscillating as a function of distance.
We did not publish our work for about
half a year, but then found out that an
oscillating screening is known for plasma
with degenerate fermions and is observed
in experiment - Friedel oscillations.
Physics is different but qualitative behavior
is the same.
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Strangely until recently the effects on
screening from condensate of a charged
Bose field were not well studied, though
it is a textbook problem.
Consider electrically neutral plasma with
large electric charge density of fermions
compensated by charged bosons. Bosons
condense when their chemical potential
reaches maximum value:

µB = mB .

Otherwise it is impossible to make larger
asymmetry between bosons and antibosons.
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Equilibrium distribution of condensed bosons:

fCB = Cδ(3)(q) +
1

exp [(E −mB)/T ]± 1

is a solution of the kinetic equation, it
annihilates the collision integral for an
arbitrary constant C.
feq is always determined by two parameters,
either T and µ, or T andC, iff µ = mB.
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Collision integral:

Icoll ∼ |Afi|2ΠffΠ(1± fi)− (inverse)

If T-invariance holds, i.e. |Aif | = |A′fi|:

Icoll ∼
[
Πfi(1± ff)− (i↔ f)

]
dτ .

Icoll = 0 for arbitrary T and C
iff µ = m.
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If T-invariance is broken and
|Aif | 6= |A′fi|, :

Icoll[feq] ∼ Πfi(1± ff)
[
|Afi|2− |Aif |2

]
.

This term is surely non-vanishing!
Do equilibrium distibutions remain the
same in T-broken theory?
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Breaking of T-invariance is unobservsble
if only one reaction channel is open. In
this case Tif = T ∗fi with time reflected
momenta.
fCB annihilates collision integral after summation
over all relevant processes, due to S-matirix
unitarity or CPT and conservation of probability.

Instead of the detailed balance condition
there operates “the cyclic balance” condition’.
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Screening propereties of medium are expressed
through f which is not necessarily equiibrium
one. In calculations neither imaginary time
method which may be inconvenient in
presence of condensate or out of equiibroum,
nor Matsubara-Keldysh technique are used.
We started from the quantum equations
of motion, solved them with Green’s functions
up to e2 order, and averaged corresponding
operators not only over vacuum but also
over “non-empty” medium.
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Operator Maxwell equations:

∂νF
µν(x) = J µB(x) +J µF (x) ,

where bosonic current is

J µB(x) = −i e[(φ†(x)∂µφ(x))−
(∂µφ†(x))φ(x)] + 2e2Aµ(x)|φ(x)|2 ,
plus fermionic current:

J µF (x) = eψ̄γµψ .
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Using equation of motion for quantum
operator φ:

(∂2 +m2)φ(x) = J φ(x)

express φ through Aµ:

φ(x) = φ0(x) +

∫∫∫
d4yGB(x− y)J φ(y) ,

φ0 is free field operator. In the lowest
order in e take φ = φ0 in J µB(x).

12



The r.h.s. of the Maxwell equations in
e2 order is linear (but non-local) in Aµ
and bilinear in φ0 and ψ0.
Expand free fields as usually:

φ0(x) =

∫∫∫
dq̃
[
a(q)e−iqx + b†(q)eiqx

]
.

Average over medium:

〈a†(q)a(q′)〉 = fB(Eq)δ
(3)(q− q′),

〈a(q)a†(q′)〉 = [1 + fB(Ep)]δ
(3)(q− q′) .

Unity is subtracted, since it is vacuum
contribution.
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The Fourier transform of the Maxwell
equations in plasma is:[
k2gµν − kµkν + Πµν(k)

]
Aν(k) = J µ(k) ,

where the boson contribution is:

ΠB
µν(k) = e2

∫∫∫
d3q

2(2π)3E
[fB(E,µ)+

f̄B(E, µ̄)
] [ lµlν

l2 −m2
+

pµpν

(p2 −m2
− 2gµν

]
,

where l = k+ q, p = k− q, and
E =

√
q2 +m2.
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Solving Fourier transformed the linear
Maxwell equation for At:

Πtt(0, k) =
e2

2π2

∫∫∫ ∞
0

dq q2

EB
[fB(EB, µB)

+f̄B(EB, µ̄B)][1 +
E2
B

kq
ln |

2q + k

2q − k
|] ,

plus similar contribution from fermions
which neutralize the plasma.
This is the well known result for Πtt in
order e2.
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The screened Coulomb potential is the
Fourier transform of tt-component of the
photon Green’s function in medium:

U(r) = e2
∫

d3k

(2π)3

eikr

k2 + Πtt(k)
=

e2

2π2r

∫ ∞
0

dkk sin kr

k2 + Πtt
.

Asymptotics of the potential of charged
impurities is determined by the singularities
of Πtt in complex k-plane.
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Comment.
Singularities of f(z):

f(z) =

∫∫∫ b

a
dyg(z, y)

in complex z-plane appear at such z for
which singularites of g(z, y), i.e. yc(z),
in complex y-plane coinsides with the
bounds of integration, a or b, or yc(z)
pinches the contour of integration.
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Two types of singularities:

1. Poles of [k2 + Πtt(k)]−1. E.g. Debye
pole. Necessary to check that the position
of the poles are at small k, such that the
infrared asymptotics of Πtt is valid.
2. Singularities of Πtt(k), originating from
the pinch of the integration contour in q-
plane by poles of f and by branch points
of log.

18



Without condensate one obtains the usual
k-independent Debye screening:

Πtt(0, k) = m2
D

originating from a pole at imaginary axis
of k.
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With condensate the corrections to Πtt
at low k are infrared singular:

∆Πtt

e2
=
m2
BT

2k
+

C

(2π)3mB

(
1 +

4m2
B

k2

)
Both terms in the r.h.s. appear only if
µ = mB.
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Instead of exponential the screening becomes
power law and oscillating, depending upon
parameters, mj:

Πtt = m2
0 +m3

1/k+m4
2/k

2.

May this have something to do with confinement?
Recent paper: P. Gaete, E. Spalucci, 0902.00905
– confinement in Higgs phase.
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Contribution from poles in the limit of
largem2r but when power law terms are
subdominant:

U(r)pole =
Q

4πr
exp (−

√
e/2m2r)×

cos (
√
e/2m2r).

Oscillating screening is known for
degenerate fermions - Friedel oscillations.
Observed in experiment.
The screening electrons are waves with
k = kF (from B. Shklovsky).
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Comment.
Friedel oscillations are commonly believed
to be zero T phenomenon, because in
this case the integral over q is in finite
interval and the singularity in k appears
when log branch point coincides with the
upper limit of the integration.
However the "pinch"method works at
T 6= 0 and the T = 0 limit can be
recovered by summing all the singularities.
Non-zero T corrections, absent in textbooks
can be obtained in this way.
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Contribution from the integral along imaginary
axis is nonzero because Π00 contains an
odd in k term. If m2 6= 0, the dominant
term is

U(r) = −
12Qm3

1

π2e2r6m8
2

.

If T 6= 0, µ = mB, but the condensate is
not yet formed, the asymptotic decrease
of the potential becomes:

U(r) = −
Q

π2e2r4m3
1

= −
2Q

π2e2r4m2
BT

.
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Contribution from logarithmic cuts (analogous
to Friedel oscillations for fermions).
If the first “pinch” (between the poles
of f(q) and logarithmic branch point)
dominates:

U1(r) = −
32πQ

e2mBr
2

e−z

ln2(2
√

2z)
sin z ,

where z = 2r
√

2πTmB.
NB: U1(r) is inversely proportional to
e2 and formally vanishes at T → 0, but
remains finite if

√
TmBr 6= 0 .
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All pinches are comparable:

U(r) ≈ −
3Q

2e2T 2m3
Br

6 ln3(
√

8mBTr)
.

U ∼ T−2 valid if r � 1/
√

16πTmB,
i.e. if T = 0.1K and mB = 1GeV the
distance should be bounded from above
as r� 3 · 10−8 cm.
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Condensation of vector bosons.
W± would condense in the early universe
if lepton asymmetry was sufficiently high.
It leads to large electric asymmetry of
W , such that µW = mW .
Plasma neutrality was maintained by quarks
and leptons.
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Vector bosons have additional degrees
of freedom, their spin states, and their
condensation demonstrates richer
possibilities: Depending on the sign of
the pairwise spin-spin couplingW ’s would
condense either in S = 0 (scalar) state
or in S = 2 (ferromagnetic) state.
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Magnetic spin-spin interaction through
one photon exchange (similar to Breit
equation):

U
spin
em (r) =

e2ρ2

4πm2
W

[
(S1 · S2)

r3
−

3
(S1 · r)(S2 · r)

r5
−

8π

3
(S1 · S2)δ(3)(r)

]
.

Here ρ is the ratio of magnetic moment
of W to the standard one.
For S-wave the energy is shifted by the
last term only.
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Local quartic self-coupling of W :

U
(spin)
4W =

e2

8m2
W sin2 θW

(S1S2)δ(3)(r).

The net result Uem +U4W is negative,
so S = 2 state is energetically favorable
and spontaneous magnetization in the
early universe is possible.
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Suppression due to screening.
The ij component of W propagator
probably remains massless: Πij ∼ 1/q2.
In QED it is true in perturbation theory,
while in non-Abelian theories the screening
may occur in higher orders of perturbation
theory due to infrared singularities. The
screening would diminish the long-range
ferromagnetic spin-spin coupling while
the local W 4 coupling is not screened.
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If the propagator is modified, and the
wave function of W -bosons is constant
in space, the spin-spin energy shift is:

δE ∼
∫∫∫
d3qδ(q)

(2π)3

q2(S1S2)− (qS1)(qS2)

q2 + Πss(q)

δE = 0, if Πss 6= 0 at q = 0.
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However, the integration over space should
be done with an upper limit, l, equal
to the average distance between the W
bosons so instead of δ(3)(q), we obtain:∫∫∫ l

0
d3reiqr =

4π

q3
[sin (ql)− ql cos (ql)] .

and the energy shift is non-zero:

δE = −
(S1S2)e2

l3m2
W

F (l) ,

F (l) =

∫∫∫ ∞
0

dx
[
x sinx+ l2Πss cosx

]
x2 + l2Πss(x/l)

.
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If l2Πss is nonnegligible the e.m. part of
the spin-spin interaction would be suppressed
and the ferromagnet turns into an antiferromagnet.
This might happen at T above the EW
phase transition when the Higgs condensate
is destroyed andmW,Z appear as a result
of temperature and density corrections
and are relatively small.
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The quantitative statement depends upon
the (unknown) modification of the space-
space part of the photon propagator in
presence of the Bose condensate of charged
W – a problem to solve.
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Problem of large scale magnetic fields:
B ∼ µG at several kpc. In the intergalactic
space the fields are probably 2-3 orders
of magnitude weaker, but still non-vanishing.
Dynamo operates only in galaxies.
Maybe ferromagnetism ofW might create
seeds for large scale magnetic fields.
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Screening of magnetic fields is connected
with the space-space components, which,
in the homogeneous and isotropic case is

Πij = a(k)

(
δij −

kikj

k2

)
+ b(k)

kikj

k2
.

Multiplying Πij by δij and by kikj we
obtain b(k) = 0 and

a(k) =
e2

32π3

∫∫∫
d3q

E

(
f + f̄

)
[
2 +

2k2(4q2 − k2)

4(k̃q̃)2 − k4

]
.

where ~k~q = kq cos θ.
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If only the condensate term is retained:

a(C)(k) =
e2C

8π3mB
≡ e2m2

C .

Since a(0) = const 6= 0, the magnetic
field is exponentially screened. In absence
of magnetic monopoles magnetic field can
be screened only by currents, hence plasma
with BEC of electrically charged Bose
field must be superconductive- well known
result. (Two regimes of superconductivity:
weakly coupled Cooper pairs, i.e. BCS or
strong coupling BEC regime.)
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If µ < mB, then Πij(k) vanishes as k2

in the limit k→ 0, as expected:

a(k) ≈
e2k2

24π2

∫∫∫
dq

E

(
f + f̄

)
and magnetic fields are not screened.
If µ = mB, even without condensate,
i.e. at C = 0, a(k) vanishes only as a
first power of k, which leads to unusual
screening features.
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a(k) is singular in the limit mB = 0,
since the integral diverges as 1/q2 at
the lower limit of integration, q = 0.
Moreover, a singularity at k = 0 exists
for massive particles if µ = mB. The
singularity comes from the integration
region where q ∼ k due to singularity of
f(q) at low q. So we obtain for k→ 0:

a(sing)(k) =
e2T

16
k .

For small k this term would dominate
over the usual k2 term and change the
screening behavior.
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In the transverse gauge, kjAj = 0, the
Maxwell equation can be solved as

Ai(x) =

∫∫∫
d3yG(x− y)J i(y) .

The asymptotics of G(r) at large r is
determined by

G(r) =
(−i)
4π2r

∫∫∫ ∞
0

dkk
(
eikr − e−ikr

)
k2 + a(k)

.

a(k) may contain odd terms in k, so the
integral along the half real k-axis cannot
be extended to the whole real axis.
It leads to non-canonical screening terms.
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Since a(k) = k2+e2m2
C+e2Tk/16, the

integral can be rewritten as:

G(r) =
(−i)
4π2r

∫∫∫ ∞
0
dkk

(
eikr − e−ikr

)
(
k2 + e2m2

C − e
2Tk/16

)
(k2 + e2m2

C)2 − e4T 2k2/256
.

The integral of the even part is expressed
through the residues of the poles in the
complex k-plane at:

k(pole) = ±i

√
e2m2

C −
e4T 2

1024
±
e2T

32
.
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IfmC > e2T/32, the screened potential
would be exponentially cut with superimposed
oscillations. For e2T � 32mC, the Green
function takes the form:

G(r) ∼ exp (− emCr) cos (e2rT/32) .

In this case the spatial damping scale is
much shorter than the oscillation scale.
However, for eT ∼ mC the scales are
comparable.
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The contour of the integration of odd in
k, part can be closed in upper or lower
quadrant of the complex k-plane. So in
addition to the poles in these quadrants
the contributions from the integrals over
the imaginary axis are to be included.
They produce a power law screening.
If C = 0, but µ = mB, then at small k:
a(k) ≈ e2kT/16, so the Green’s function
drops as: G(r) ∼ 8/(π2e2r2T ). This is
realized when r > 1/T .
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In presence of condensate the Green’s
function acquires an additional constant
term e2m2

C. In this case the contribution
of the integral over the imaginary axis of
k gives G ∼ T/(16 e2π2r4m4

C).
Changing of the asymptotics of screening
signals formation of the condensate.
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THE END
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Calculation of singularity.
It is convenient to separate the integral
into two parts 0 < q < k/2 and k/2 < q <
∞. In the first part we introduce the new
integration variable x = 2q/k, so 0 < x <
1. In the limit of small k the energy can
be expanded as EB ≈ mB + k2x2/8mB.
At small q the distribution function is
infrared singular:[
exp

(
EB −mB

T

)
− 1

]−1
≈ 2mBT

q2
=

8mBT

k2x2
.(1)

Usually this singularity is not dangerous
because it is canceled by the integration
measure, ∼ q2. However, the logarithmic
term behaves as k/q for q > k and as q/k
for q < k. Thus the integral is finite, but
it does not vanish as k2 when k → 0.
The first part of the integral with q <

k/2 can be taken analytically and we obtain:

a
(s)
1 (k) =

e2kT

8π2

∫ 1

0
dx

[
2−

(
x− 1

x

)
ln

∣∣∣∣1 + x

1− x

∣∣∣∣] =
47



e2kT

8π2

(
1 +

π2

4

)
. (2)

There is also another contribution coming
from the part of the integral with q >
k/2. As k → 0, the second part of the
integral, k/2 < q <∞, gives:

a
(s)
2 (k) =

e2kT

8π2

∫ ∞
1

dx

[
2−

(
x− 1

x

)
ln

∣∣∣∣1 + x

1− x

∣∣∣∣] =
e2kT

8π2

(
−1 + π2

4

)
, (3)

such that the total contribution is:

a(s)(k) = a
(s)
1 (k) + a

(s)
2 (k) =

e2T

16
k . (4)

For small k this term could dominate
over the usual k2 term and would change
the screening behavior.
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so we present the denominator as half
of sum and difference of even and odd
function as following:

f (k) = [f (k) + f (−k)]/2 + [f (k)− f (−k)]/2 .(5)
Since a(k) = k2+e2m2

C+e
2Tk/16, eq. (??)

can be rewritten as:

G(r) =
(−i)
4π2r

∫ ∞
0

dkk(
eikr − e−ikr

) (
k2 + e2m2

C − e
2Tk/16

)
(k2 + e2m2

C)
2 − e4T 2k2/256

.(6)

The integral of the even part may be
transformed, as usually, into the integral
along the whole real axis and after closing
the contour in the upper (for eikr ) or
lower (for e−ikr ) half-plane we express
the result through the residues in the
corresponding poles in the complex k-
plane at:

k(pole) = ±i
√
e2m2

C −
e4T 2

1024
± e2T

32
. (7)

49



If mC > e2T/32, the resulting screened
potential would be exponentially cut with
superimposed oscillations. For e2T � 32mC,
the Green function takes the form:

G(r) ∼ exp(−emCr) cos(e
2rT/32) . (8)

In this case the spatial damping scale is
much shorter than the oscillation scale.
However, if eT ∼ mC the scales are comparable.
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